

Fuß- und Radwegbrücke über die Isar zwischen den Gemeinden Pullach und Grünwald

(Konzeptstudie im Rahmen einer studentischen Arbeit 2019)

Dr.-Ing. Nicholas SchrammProf. Dr.-Ing. Oliver Fischer
Drilon Gubetini, M.Sc.

Technische Universität München (TUM) Lehrstuhl für Massivbau www.mb.bgu.tum.de Grünwald, Dienstag 08.05.2023

Einleitung

TUM, Lehrstuhl für Massivbau (Ingenieurfakultät Bau | Geo | Umwelt)

- Lehre und Forschung im Bereich konstruktiver Ingenieurbau
- Bachelor- und Masterstudiengänge (drei eigene Vertiefungsrichtungen)
- 21 Mitarbeiter (14 Wissenschaftler)
- große angegliederte experimentelle Forschungseinrichtung (36 Mitarbeiter)
- fachliche Schwerpunkte:
 Brückenbau, Tunnelbau, Hochbau

Fachlicher und persönlicher Bezug: Brückenplanung

Fachlicher und persönlicher Bezug: Brückenplanung

Fachlicher und persönlicher Bezug: Isarbrücke Grünwald

Grünwald, Dienstag 08.05.2023

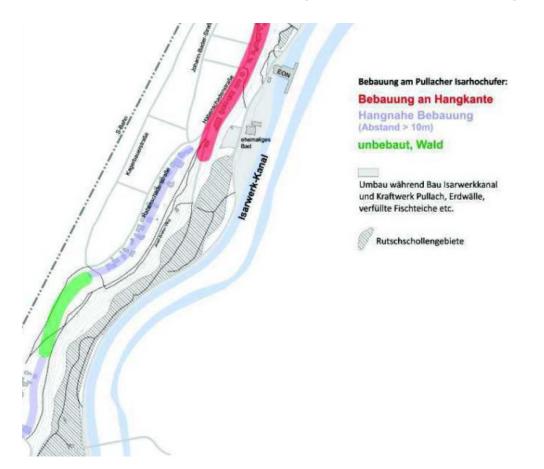
Standortanalyse

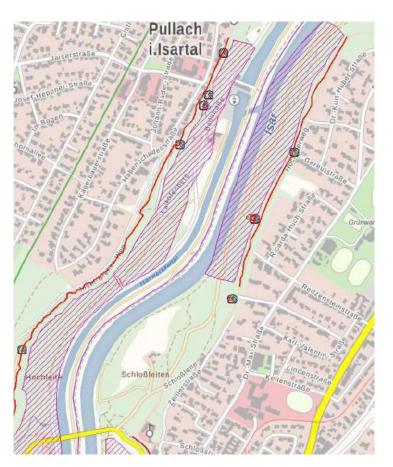
Grundlagen, Standortüberlegungen

- Lage etwa zwischen den Gemeindezentren Grünwald & Pullach (damit auch nicht in Konkurrenz zur bestehenden Straßenbrücke)
- günstige Zugänglichkeit und Wegeanbindung auf beiden Seiten (Verbindung der Hochuferwege)
- sichere und barrierefreie Querung des Isartals (kein Abstieg notwendig)
- nicht nur funktionales Bauwerk, auch Erlebnis (u.a. neue Blickbeziehungen)
- Gründungsmöglichkeiten für Stützen und Widerlager
- außerhalb von Bereichen mit Hangrutschungsgefährdung
- Naturschutzrechtliche Anforderungen waren zu dieser Zeit noch unklar!

Mögliche Standorte nach Ortstermin 16.04.2018

mögliche Anbindung Habenschadenstraße

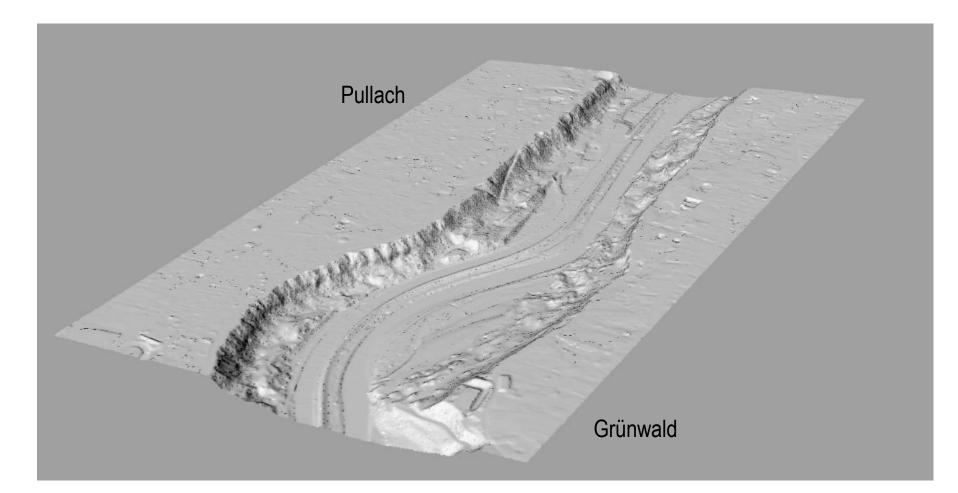

Verlauf des Hochuferwegs entlang der Pullacher Hangkante


Verlauf des Hochuferwegs entlang der Grünwalder Hangkante

Voruntersuchung: Geogefahren, Hangbewegungen

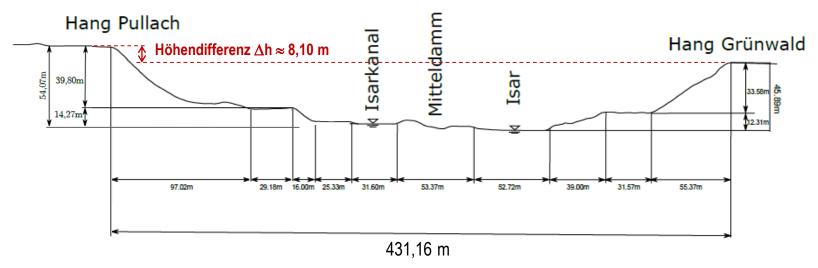
 Sichtung vorhandener Gutachten (Pullach, Grünwald) zu geotechnischen Verhältnissen und möglichen Gefährdungen durch Hangrutschungen

Voruntersuchung: Geogefahren, Hangbewegungen

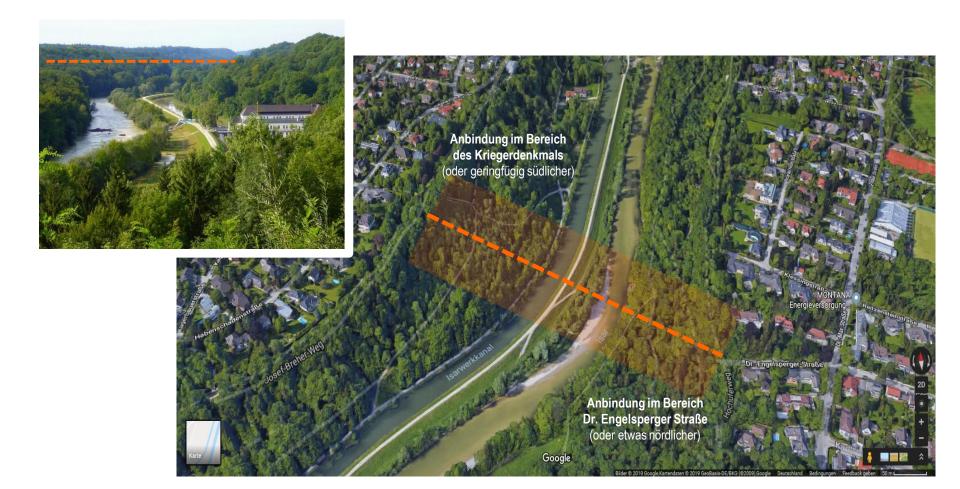

- Treffen mit dem Bayerischen Landesamt für Umwelt am 12.07.2018 (Herr Dr. Poschinger und Thomas Gallemann)
 - Brücke grundsätzlich an verschiedenen Stellen realisierbar
 - grundsätzliche Diskussion kritischer und gutmütigerer Bereiche (Grünwald am günstigsten: WDL im Bereich Dr. Engelsperger Straße)
 - Im Bereich der Hangkanten sollten nach Möglichkeit nur geringe zusätzliche Lasten eingeleitet werden (Empfehlung: Abstand möglichst > 20 m)
 - Hanganbrüche auf Grünwalder Seite: 1970 letzte Großrutschung an der Gereutstraße infolge Hanganbruch, aktuell Neuanbruch im Bereich der Klessingstraße, dort Bewegungen in den kommenden Jahren möglich
 - tragfähiger Baugrund im Bereich der Talsohle
 (Abtragung der Hauptlasten möglichst im Talbereich)

Grundlagen für die Konzeptstudie, für vertieften Bauwerksentwurf an konkretem Standort noch Baugrundaufschlüsse und detailliertes Baugrundgutachten erforderlich

Voruntersuchung: Brückenlänge, Spannweiten

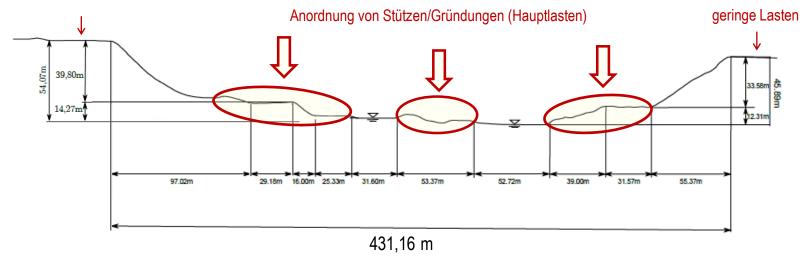

3D-Geländemodell (Landesamt für Digitalisierung, Breitband und Vermessung)

Voruntersuchung: Lage der Talquerung


- WDL Seite Grünwald auf Höhe Dr. Engelsperger Straße
 - Lage zwischen den beiden Ortszentren, günstige Weganbindung möglich
 - kaum Gefährdung durch Hangbewegungen, ggf. lokale Sicherung erforderlich
 - günstige Gründungsverhältnisse im Tal, aber: größte Gesamtbrückenlänge

Voruntersuchung: Lage der Talquerung

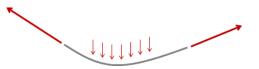
WDL Seite Grünwald auf Höhe Dr. Engelsperger Straße


Grünwald, Dienstag 08.05.2023

Mögliche Tragsysteme (Voruntersuchungen, erste Ideen)

- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - ❖ Fuß- und Radwegnutzung, Dienstfahrzeug sinnvoll, Nutzbreite etwa 5,0 6,0 m
 - direkte Verbindung für alle, ggf. Aufenthaltsbereiche, keine Abenteuerbrücke
 - schlanke Tragstruktur (aber Steifigkeit): Bogen, Seilverspannung, Stützenraster
 - Baugrund: Hauptlasten im Tal, möglichst geringe zusätzliche Hangbelastung

- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Tragsystem Hängebrücke (ohne Pylone)



Charles Kuonen Hängebrücke, Randa (Wallis) / Schweiz, Gesamtlänge 494 m, längste Fußgänger-Hängebrücke der Welt, Eröffnung 2017

- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Tragsystem Hängebrücke (ohne Pylone)

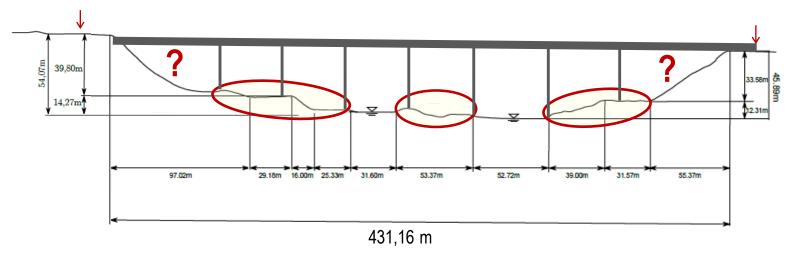
Bewertung:

- Gesamter Lastabtrag über sehr große Horizontalkräfte im Auflagerbereich!
 (Verankerung im Bereich der beiden Uferhänge ungünstig)
- o größere Steigungen (oder noch höhere Kräfte), kaum barrierefrei realisierbar
- weiche weitgespannte Tragstruktur, schwingungsanfällig, keine Fahrzeugnutzung
- o grundsätzlich einfaches Bauverfahren, vergleichsweise günstig (falls möglich)
- Fazit: <u>keine Option</u> für eine Verbindungsbrücke zwischen Grünwald und Pullach

- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Hängebrücke (mit Pylonen), Spannband

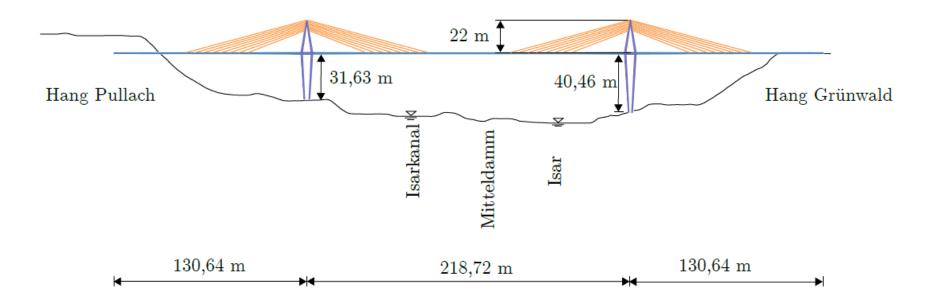
Bewertung:

- analog reine Hängebrücke, Kräfte in Hängeseilen (über Pylone) kaum geringer (Verankerung etwas weiter von Hangkante versetzbar, dann aber hohe Pylone)
- o Pylone deutlich über Hangkante, ästhetisch kaum in Landschaft integrierbar
- o weiche weitgespannte Tragstruktur, schwingungsanfällig, ggf. Fahrzeugnutzung


 Fazit: analog reiner Hängebrücke <u>keine</u> sinnvolle Option für die Talquerung Grünwald – Pullach

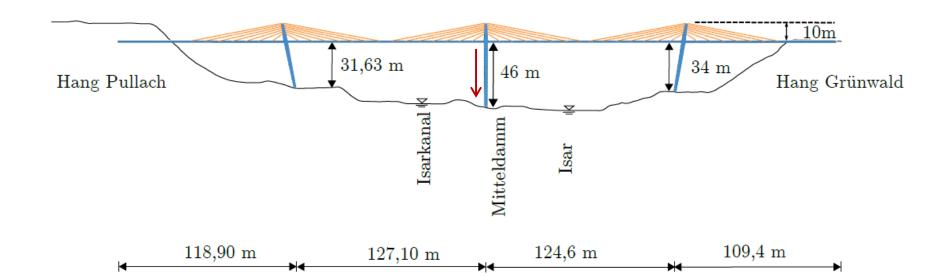
- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Balkenbrücke (auf Einzelstützen)

Bewertung:

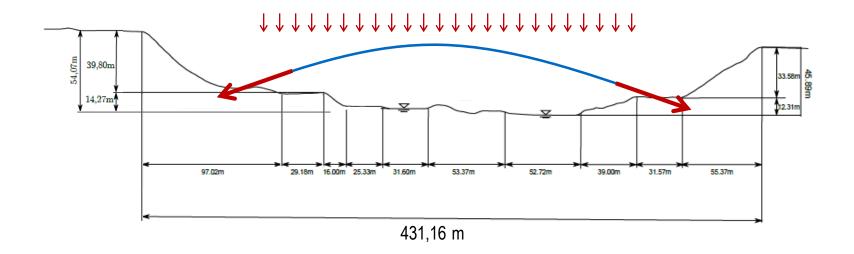

- o relativ viele Stützen erforderlich, um schlankes Tragwerk zu erhalten
- große Randstützweiten (Hangbereich)

- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Tragsystem Schrägseilbrücke

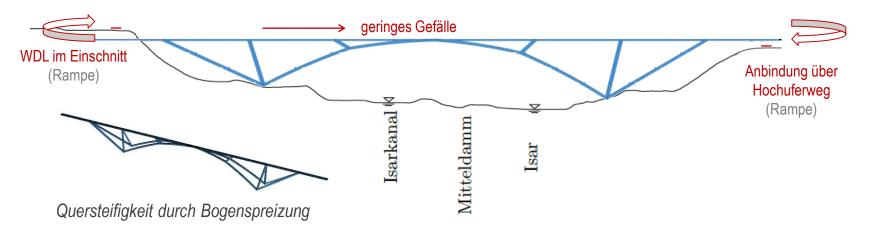
- größere Spannweiten durch Seilverspannung möglich
- Pylonhöhe über Deck beachten (Gestaltung, Einbindung), weiches System
- o relativ große Spannweiten bei 2 Pylonen, dominante Tragstruktur



- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Tragsystem Schrägseilbrücke



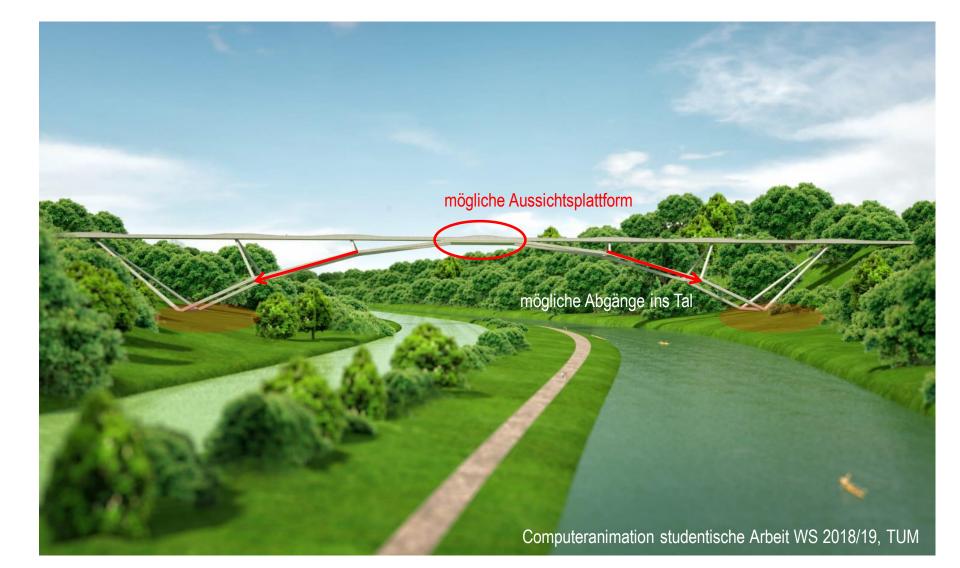
- größere Spannweiten durch Seilverspannung möglich
- bessere Lösung mit 3 Pylonen (Gestaltung, Spannweiten, Schlankheit)
- Anbindung an Mitteldamm grundsätzlich realisierbar, relativ massive Pylonschäfte



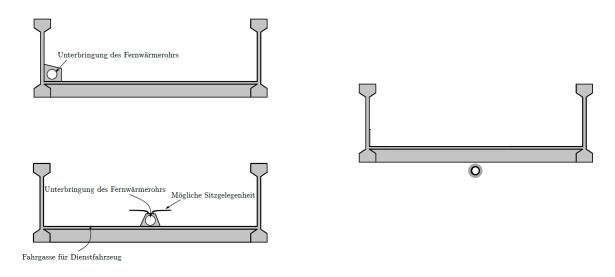
- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Tragsystem aufgeständerte Bogenbrücke
 - wesentlicher Lastabtrag über Bogendruckkräfte, steiferes System
 - weitgespannter schlanker Bogen, formoptimiert nach "Stützlinie"
 - freier Talgrund, keine Stützen im mittleren Talbereich (nur 2 Gründungen)

- Grundsätzliche Überlegungen zum Tragsystem (und zur Nutzung)
 - Beispiel: Tragsystem aufgeständerte Bogenbrücke
 - wesentlicher Lastabtrag über Bogendruckkräfte, relativ steifes System
 - weitgespannter schlanker Bogen, formoptimiert nach "Stützlinie"
 - freier Talgrund, keine Stützen im mittleren Talbereich (nur 2 Gründungen)
 - o aufgeständerte Gehbahn, anmutiges Erscheinungsbild durch Schrägstreben
 - Kompensation Höhendifferenz durch WDL in Einschnitt/Überführung und Gefälle

- Tragsystem aufgeständerte Bogenbrücke (detaillierter untersucht im Rahmen der studentischen Arbeit)
 - wesentliche Vorteile:
 - wirkt im architektonischen Gesamtkontext passend bzw. unaufdringlich
 - sehr schlanke Tragstruktur (Einsatz innovativer Materialien) realisierbar!
 - o aufgrund Bogen: steifere Gesamttragwirkung, Dienstfahrzeug berücksichtigt
 - keine Bauelemente über Geländeniveau erforderlich (z.B. Pylone)
 - durch schlanke Tragelemente und Verzicht auf Seile günstig für Vogelflug
 - weitere Optionen:
 - Abgang talseitig (entlang des Bogens) grundsätzlich denkbar
 - Sitzgelegenheiten, Aussichtsplattform (z.B. im Scheitelbereich) realisierbar
 - o durch Krankenwagen/Linientaxi befahrbar (Brückenbreite?), Leitungen integrierbar



Tragsystem Bogenbrücke mit aufgeständertem Brückendeck


Tragsystem Bogenbrücke mit aufgeständertem Brückendeck

Tragsystem Bogenbrücke mit aufgeständertem Brückendeck

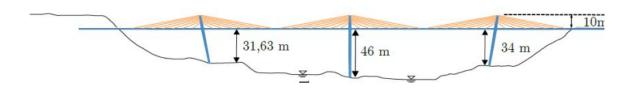
- Schaffung/Einbindung weiterer Synergieeffekte
 - z.B. Verbindung Fernwärmeleitungen (Erdwärme Grünwald & IEP GmbH)
 - Überführung im Brückendeck problemlos möglich (statisch kaum relevant)
 - Leitungen (DN 250 oder auch größer) in Brückentragwerk integrierbar

Brücke als Freizeit-Attraktion und Ausblickspunkt?

Einbindung von Sitzgelegenheiten etc.

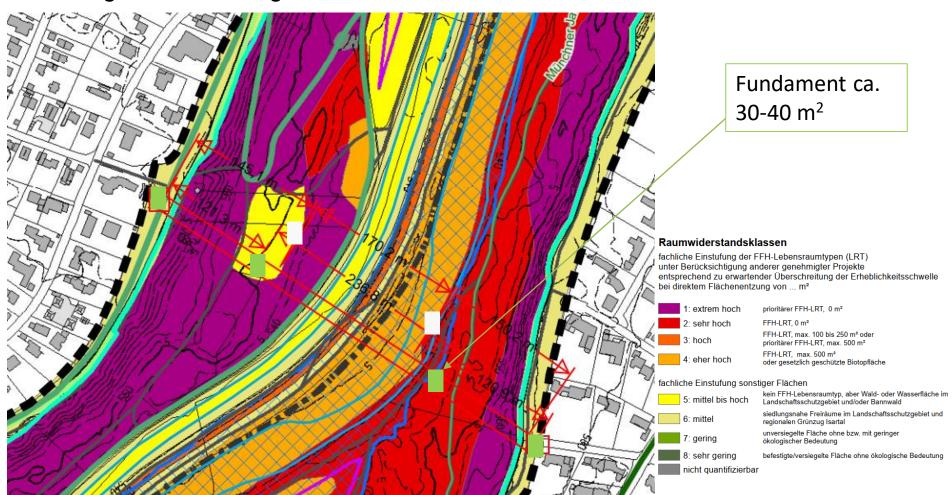
Grünwald, Dienstag 08.05.2023

Zusammenfassung und Ausblick



Fuß- und Radwegbrücke zwischen Pullach und Grünwald

- Zusammenfassung, Fazit
 - direkte barrierefreie Verbindung möglich
 - verschiedene Tragsysteme grundsätzlich realisierbar
 - aus 1. Studie 2019 präferiert: Bogen (alternativ Schrägseilkonstruktion, 3 Pylone)



Fuß- und Radwegbrücke zwischen Pullach und Grünwald

Gegenüberstellung Entwurf und Raumwiderstandsklassen, Stand 2023

Fuß- und Radwegbrücke zwischen Pullach und Grünwald

- Ausblick: Wie könnte es weitergehen?
 - falls grundsätzliches Interesse: weitere Untersuchungen/Klärungen erforderlich
 - Gesamtgestaltung, Konkretisierung Nutzung (u.a. Aufenthalt, Abgang, Leitungen)
 - Detailklärung Wegeanbindung am Hochufer, Baugrundgutachten (Standort, BW)
 - Erstellung eines "Lastenhefts" (Definition der Anforderungen und Vorstellungen des Auftraggebers, Definition von Randbedingungen)
 - Auslobung eines Realisierungswettbewerbs nach RPW 2013
 - Jury bestimmt Platzierung 1.-3. etc.
 - Genaue Kostenschätzung je nach Entwurf
 - Ausarbeitung Entwurfsplanung (inkl. konstruktiver Details, Bauverfahren, etc.)

